Новое в педагогике » Методика изучения элементов математического моделирования в курсе математики 5-6 классов » Анализ учебников Г. В. Дорофеева, Л. Г. Петерсон «Математика-5», «Математика-6» с точки зрения наличия задач для формирования умений, характерных для математического моделирования

Анализ учебников Г. В. Дорофеева, Л. Г. Петерсон «Математика-5», «Математика-6» с точки зрения наличия задач для формирования умений, характерных для математического моделирования

Страница 2

Переведи условие задачи на математический язык: Под строительную площадку отвели прямоугольный участок, длина которого на 25 м больше его ширины. При утверждении плана застройки длину участка увеличили на 5 м, а ширину – на 4 м, в результате площадь участка увеличилась на 300 м2. Какова площадь образовавшейся строительной площадки?

Построй математическую модель задачи и найди ответ методом перебора: Прямоугольный газон обнесен изгородью, длина которой 30 м. Площадь газона 56 м2. Найди длины сторон газона, если известно, что они выражаются натуральными числами.

Понятие «параллелепипед»

Прямоугольный параллелепипед является математическим эквивалентом «аквариума», «печи», «ящика», «бассейна». Например.

Из фанеры требуется сделать открытый ящик, имеющий форму прямоугольного параллелепипеда с измерениями 40 см, 20 см и 15 см. Сколько фанеры потребуется для изготовления ящика? Какова будет его вместимость?

Из жести сделали бак без крышки. Он имеет форму куба с длиной ребра 8 дм. Бак надо покрасить снаружи и изнутри. Какую площадь надо покрасить? Какова вместимость бака?

Чтобы сделать бассейн, в земле выкопали котлован в форме прямоугольного параллелепипеда длиной 25 м, шириной 6 м и глубиной 3 м. Сколько кубических метров земли пришлось вынуть?

Имеется два аквариума с измерениями 45´32´50 см и 50´32´45 см.

а) На изготовление какого из двух аквариумов потребовалось больше стекла?

б) Аквариумы заполнили водой так, что уровень воды в первом аквариуме ниже верхнего края на 10 см, а во втором – на 5 см. В каком аквариуме больше воды?

Понятия «окружность» и «круг»

При изучении окружности, круга и их свойств в учебнике используются задачи, в которых используются такие термины как «окружность колеса», «обороты колеса», «арена цирка», «циферблат часов», «беговая дорожка», «экватор Земли».

Великий древнегреческий математик Архимед (III в. до н.э.) установил, что длина окружности примерно в 3 раза больше ее диаметра. Пользуясь этим результатом, реши задачу: Какова длина беговой дорожки ипподрома, имеющей форму круга радиусом км?

Длина экватора Земли равна примерно 40000 км, а ее диаметр составляет длины экватора. Чему равен диаметр Земли?

Сколько оборотов сделает колесо на участке пути в 1,2 км, если диаметр колеса равен 0,8 м? Число p округли до целых .

Чему равна площадь циферблата часов, если длина минутной стрелки равна 4,5 см. Число p округли до целых .

Арена цирка имеет длину 40,8 м. Найди диаметр и площадь арены. Число p округли до целых (см. № 737, [15]).

Также к этой группе относятся задачи:

5 класс, часть 1, [11]: №№ 102 (3), 142 (5), 280 (1), 716, 753, 791, 800;

5 класс, часть 2, [12]: №№ 269 (5), 271 (1), 307, 352 (3), 379 (1), 380 (2);

6 класс, часть 1, [13]: №№ 56 (а);

6 класс, часть 3, [15]: №№ 341, 342, 547, 549 (2,4), 562, 566.

Также при обучении действию замены исходных терминов выбранными математическими эквивалентами применяются задачи, в которых требуется замена одной единицы измерения другой более мелкой и наоборот. Таких задач в учебниках очень много, но в основном в них требуется переводить километры в метры, метры в сантиметры, минуты в часы (№№ (5 класс, часть 1, [11]) 146 (1,2,4), 162 (2), 340 (1), 392, 406, 408, 504, 561, 581, 679, 752. 764, 786, 797, 798; №№ 44, 56, 127 (3), 221, 228, 616 (2), 769 (2), 901, 992, 1065, 1067 (5 класс, часть 2, [12]); №№ 189 (2), 190 (2), 191 (2), 198, 199, 201, 209, 210, 212, 223, 233, 247, 305, 306, 334 (6 класс, часть 1, [13]); №№ 44, 49, 125,203, 204, 292, 293 (1), 322, 372, 373, 551 (6 класс, часть 2, [14]); №№ 116, 130 (а), 132,133, 154, 195, 223, 228, 304, 433-436, 444, 465, 466, 467, 499, 563, 633, 667, 678-680, 683, 700, 706, 717, 720, 727, 728, 738, 764, 767 (б) (6 класс, часть 3, [15])), что не вызывает больших сложностей у школьников. Например.

Страницы: 1 2 3 4 5 6 7


Смотрите также::

Развитие исследовательских умений учащихся 7-9 классов при обучении математике
Одна из основных задач школы – включение ребенка в активный процесс познания мира, себя в этом мире. Эта задача облегчается, когда учитель является носителем традиции науки и исследовательской деятельности. Исследование деятельности в отечественной психологии происходило с диалектико-материалистиче ...

Методика обучения математическому моделированию по учебникам Дорофеева Г. В., Петерсон Л. Г. «Математика-5», «Математика-6»
Учебники Г. В. Дорофеева, Л. Г. Петерсон «Математика-5», «Математика-6» входят в часть единого непрерывного курса математики и являются продолжением учебника математики для начальной школы авторов Н. Я. Виленкина и Л. Г. Петерсон. Этот курс разрабатывается в настоящее время с позиции развивающего о ...

Результаты экспериментального исследования особенностей восприятия и воспроизведения интонации у детей с нарушением опорно-двигательного аппарата
Экспериментальное исследование позволило выявить следующие особенности: Общий балл по восприятию видов интонации составляет 1,6; общий балл по воспроизведению - 2, 1. Воспроизведение видов интонации дается детям легче, чем восприятие. В основном дети передают виды интонации в своей речи, но с ошибк ...

Разделы

Copyright © 2021 - All Rights Reserved - www.edumask.ru