Переведи условие задачи на математический язык: Под строительную площадку отвели прямоугольный участок, длина которого на 25 м больше его ширины. При утверждении плана застройки длину участка увеличили на 5 м, а ширину – на 4 м, в результате площадь участка увеличилась на 300 м2. Какова площадь образовавшейся строительной площадки?
Построй математическую модель задачи и найди ответ методом перебора: Прямоугольный газон обнесен изгородью, длина которой 30 м. Площадь газона 56 м2. Найди длины сторон газона, если известно, что они выражаются натуральными числами.
Понятие «параллелепипед»
Прямоугольный параллелепипед является математическим эквивалентом «аквариума», «печи», «ящика», «бассейна». Например.
Из фанеры требуется сделать открытый ящик, имеющий форму прямоугольного параллелепипеда с измерениями 40 см, 20 см и 15 см. Сколько фанеры потребуется для изготовления ящика? Какова будет его вместимость?
Из жести сделали бак без крышки. Он имеет форму куба с длиной ребра 8 дм. Бак надо покрасить снаружи и изнутри. Какую площадь надо покрасить? Какова вместимость бака?
Чтобы сделать бассейн, в земле выкопали котлован в форме прямоугольного параллелепипеда длиной 25 м, шириной 6 м и глубиной 3 м. Сколько кубических метров земли пришлось вынуть?
Имеется два аквариума с измерениями 45´32´50 см и 50´32´45 см.
а) На изготовление какого из двух аквариумов потребовалось больше стекла?
б) Аквариумы заполнили водой так, что уровень воды в первом аквариуме ниже верхнего края на 10 см, а во втором – на 5 см. В каком аквариуме больше воды?
Понятия «окружность» и «круг»
При изучении окружности, круга и их свойств в учебнике используются задачи, в которых используются такие термины как «окружность колеса», «обороты колеса», «арена цирка», «циферблат часов», «беговая дорожка», «экватор Земли».
Великий древнегреческий математик Архимед (III в. до н.э.) установил, что длина окружности примерно в 3
раза больше ее диаметра. Пользуясь этим результатом, реши задачу: Какова длина беговой дорожки ипподрома, имеющей форму круга радиусом
км?
Длина экватора Земли равна примерно 40000 км, а ее диаметр составляет
длины экватора. Чему равен диаметр Земли?
Сколько оборотов сделает колесо на участке пути в 1,2 км, если диаметр колеса равен 0,8 м? Число p округли до целых .
Чему равна площадь циферблата часов, если длина минутной стрелки равна 4,5 см. Число p округли до целых .
Арена цирка имеет длину 40,8 м. Найди диаметр и площадь арены. Число p округли до целых (см. № 737, [15]).
Также к этой группе относятся задачи:
5 класс, часть 1, [11]: №№ 102 (3), 142 (5), 280 (1), 716, 753, 791, 800;
5 класс, часть 2, [12]: №№ 269 (5), 271 (1), 307, 352 (3), 379 (1), 380 (2);
6 класс, часть 1, [13]: №№ 56 (а);
6 класс, часть 3, [15]: №№ 341, 342, 547, 549 (2,4), 562, 566.
Также при обучении действию замены исходных терминов выбранными математическими эквивалентами применяются задачи, в которых требуется замена одной единицы измерения другой более мелкой и наоборот. Таких задач в учебниках очень много, но в основном в них требуется переводить километры в метры, метры в сантиметры, минуты в часы (№№ (5 класс, часть 1, [11]) 146 (1,2,4), 162 (2), 340 (1), 392, 406, 408, 504, 561, 581, 679, 752. 764, 786, 797, 798; №№ 44, 56, 127 (3), 221, 228, 616 (2), 769 (2), 901, 992, 1065, 1067 (5 класс, часть 2, [12]); №№ 189 (2), 190 (2), 191 (2), 198, 199, 201, 209, 210, 212, 223, 233, 247, 305, 306, 334 (6 класс, часть 1, [13]); №№ 44, 49, 125,203, 204, 292, 293 (1), 322, 372, 373, 551 (6 класс, часть 2, [14]); №№ 116, 130 (а), 132,133, 154, 195, 223, 228, 304, 433-436, 444, 465, 466, 467, 499, 563, 633, 667, 678-680, 683, 700, 706, 717, 720, 727, 728, 738, 764, 767 (б) (6 класс, часть 3, [15])), что не вызывает больших сложностей у школьников. Например.
Смотрите также::
Содержание курса математики в начальных классах
Общие положения: Содержание начального курса математики определяется целями обучения. С этой точки зрения рассмотрим его важнейшие элементы. Курс математики для младших школьников должен обеспечивать преемственность в изучении математики в средних и старших классах. Это может достигаться по следующ ...
Система профессиональной ориентации молодежи
Для рассмотрения понятия «профессиональной ориентации» необходимо определить круг понятий, так или иначе связанных с профориентацией, и дать им определения. В первую очередь рассмотрим понятие «профессия». Е.А. Климов предлагает четыре подхода к определению данного термина: 1) область приложения си ...
Принцип историзма в обучении математике
Чтобы понять сущность принципа историзма, для начала необходимо рассмотреть историю становления этого принципа в обучении. Вопрос о целесообразности использования элементов истории математики и историко-генетического метода в процессе обучения не является новым. К нему на протяжении 300 лет обращал ...