Получили, что
и
.
III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи.
Так скорость автомобиля не может быть отрицательным числом, то условию задачи соответствует только один корень
, т.е. скорость второго автомобиля равна 80 км/ч, а скорость первого 90 км/ч.
Задача 2. Группа студентов решила купить магнитофон ценой от 170 до 195 долларов. В последний момент двое отказались участвовать в покупке, поэтому каждому из оставшихся пришлось внести на 1 доллар больше. Сколько стоил магнитофон?
Решение.
I этап. Формализация. Построим математическую модель задачи. Пусть х - число студентов в группе, у долларов – величина первоначально предлагаемого взноса. Тогда стоимость магнитофона
. После того, как двое отказались участвовать в покупке, студентов стало
, а взнос составил
доллар. Следовательно стоимость магнитофона равна
. Условие задачи можно представить в виде системы
Математическая модель построена.
II этап. Внутримодельное решение. Рассмотрим систему, состоящую из уравнения и неравенства
В уравнении раскроем скобки и приведем подобные. Получим следующую систему
Из уравнения выразим y,
. Следовательно,
. Так как х - натуральное число, то сейчас систему неравенств можно решать в натуральных числах. Из неравенства
имеем х
. Из неравенства
имеем х
. Таким образом, нужно найти натуральные решения неравенств
. Ясно, что х = 20. Тогда у = 9 и
= 180.
III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи. Магнитофон стоил 180 долларов.
Задача 3. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре l оно пропускало больше света.
Решение.
I этап. Формализация. Построим математическую модель данной задачи.
Требуется найти размеры окна с наибольшей площадью. Обозначим размеры: r – радиус полукруга, h – высота прямоугольника, тогда основание прямоугольника 2r.
Чтобы определить, какое из переменных выбрать аргументом исследуемой функции, надо посмотреть, какое из них проще выражается через другое:
Смотрите также::
Методика организации текущего контроля при изучении квадратных уравнений в
8 классе
В данном параграфе приведем примеры уроков по теме «Квадратные уравнения». План опроса по этой теме мы составили выше. Если рассматривать дидактические материалы и разработки самостоятельных работ, то в дидактических материалах к учебнику Алгебра – 8 под редакцией Теляковского самостоятельные работ ...
Католическое образование
Поскольку в России шли достаточно острые дискуссии о целесообразности преподавания православия в средних школах, данный раздел был включен в обзор как пример религиозного воспитания, которое обеспечивается в странах Европы. Из всех европейских стран католическое образование наиболее распространено ...
Анализ проблемы формирования профессиональных умений и навыков
Проблема формирования умений и навыков неразрывно связывалась с вопросом об автоматизации человеческого действия, рассматриваемой двоя-ко: с одной стороны, как феномен конечной стадии формирования нового действия, на которой человек достигает совершенства его исполнения, с дру-гой — как важнейшее с ...