Третий шаг – это перевод неформальной модели в математическую модель. Такой перевод включает в себя рассмотрение словесного описания неформальной модели и поиск подходящей математической структуры, способной отобразить изучаемые процессы. Это самый сложный этап во всем процессе моделирования. Стадия перевода может таить в себе две опасности. Во-первых, неформальные модели имеют тенденцию быть неоднозначными, и обычно существует несколько способов перевода неформальной модели в математическую (при этом альтернативные математические модели могут иметь совершенно различный смысл). На самом деле это одна из главных причин, изначально толкающих к применению математических моделей: язык математики лишен двусмысленностей и более точен, чем естественный язык, он позволяет исследовать скрытый смысл тончайших различий в формулировках, который плохо доступен исследованию посредством естественного языка.
Следующий этап – этап решения задачи в рамках математической теории – можно еще назвать этапом математической обработки формальной модели. Он является решающим в математическом моделировании. Именно здесь применяется весь арсенал математических методов – логических, алгебраических, геометрических и т. д. – для формального вывода нетривиальных следствий из исходных допущений модели. На стадии математической обработки обычно – вне зависимости от сути задачи – имеют дело с чистыми абстракциями и используют одинаковые математические средства. Этот этап представляет собой дедуктивное ядро моделирования.
На последнем этапе моделирования полученные выводы проходят через еще один процесс перевода – на сей раз с языка математики обратно на естественный язык.
Рассмотрим на примере реализацию всех этапов процесса математического моделирования.
Задача 1. Два автомобиля выехали одновременно из пункта А в пункт В, расстояние между которыми 540 км. Первый автомобиль ехал со скоростью, на 10 км/ч большей, чем второй, и прибыл в пункт В на 45 мин раньше второго. Найдите скорость каждого автомобиля.
I этап. Формализация. Построим математическую модель задачи.
Обозначим за x км/ч – скорость второго автомобиля, тогда скорость первого автомобиля равна (x+10) км/ч.
ч – время, потраченное на весь путь вторым автомобилем.
ч – время, потраченное на весь путь первым автомобилем.
Известно, что второй автомобиль потратил на путь на 45 мин больше, чем первый.
.
![]()
. Полученное уравнение является математической моделью данной задачи.
II этап. Внутримодельное решение.
Перенесем все слагаемые в одну часть
.
Приведем слагаемые к общему знаменателю
.
Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю. Получим следующую систему: ![]()
.
Смотрите также::
Понятие и структурные особенности образовательной системы РФ
«Образование» – одно из наиболее общих педагогических понятий. Не существует единой трактовки понятия «образование». В каждом случае определение отражает какую-то одну или несколько граней этого понятия, среди которых ученые (Б.С. Гершунский, В.А. Сластенин, В.А. Ситаров, А.В. Хуторской и др.) выде ...
Виды коммуникативных игр
Приемы коммуникативной методики используются в коммуникативных играх, в процессе которых учащиеся решают коммуникативно-познавательные задачи средствами изучаемого иностранного языка. Поэтому главной целью коммуникативных игр является организация иноязычного общения в ходе решения поставленной комм ...
Программа обучения лепке в детском саду
Содержанием декоративной лепки могут быть сосуды, бусы, настенные и настольные пластинки. В старшей группе можно дать задание – изобразить сосуды, бусы, а детям шести лет предложить все виды декоративной лепки, расширяя способы выполнения. Так, в старшей группе дети учатся лепить сосуды путем вдавл ...