Третий шаг – это перевод неформальной модели в математическую модель. Такой перевод включает в себя рассмотрение словесного описания неформальной модели и поиск подходящей математической структуры, способной отобразить изучаемые процессы. Это самый сложный этап во всем процессе моделирования. Стадия перевода может таить в себе две опасности. Во-первых, неформальные модели имеют тенденцию быть неоднозначными, и обычно существует несколько способов перевода неформальной модели в математическую (при этом альтернативные математические модели могут иметь совершенно различный смысл). На самом деле это одна из главных причин, изначально толкающих к применению математических моделей: язык математики лишен двусмысленностей и более точен, чем естественный язык, он позволяет исследовать скрытый смысл тончайших различий в формулировках, который плохо доступен исследованию посредством естественного языка.
Следующий этап – этап решения задачи в рамках математической теории – можно еще назвать этапом математической обработки формальной модели. Он является решающим в математическом моделировании. Именно здесь применяется весь арсенал математических методов – логических, алгебраических, геометрических и т. д. – для формального вывода нетривиальных следствий из исходных допущений модели. На стадии математической обработки обычно – вне зависимости от сути задачи – имеют дело с чистыми абстракциями и используют одинаковые математические средства. Этот этап представляет собой дедуктивное ядро моделирования.
На последнем этапе моделирования полученные выводы проходят через еще один процесс перевода – на сей раз с языка математики обратно на естественный язык.
Рассмотрим на примере реализацию всех этапов процесса математического моделирования.
Задача 1. Два автомобиля выехали одновременно из пункта А в пункт В, расстояние между которыми 540 км. Первый автомобиль ехал со скоростью, на 10 км/ч большей, чем второй, и прибыл в пункт В на 45 мин раньше второго. Найдите скорость каждого автомобиля.
I этап. Формализация. Построим математическую модель задачи.
Обозначим за x км/ч – скорость второго автомобиля, тогда скорость первого автомобиля равна (x+10) км/ч.
ч – время, потраченное на весь путь вторым автомобилем.
ч – время, потраченное на весь путь первым автомобилем.
Известно, что второй автомобиль потратил на путь на 45 мин больше, чем первый.
.
![]()
. Полученное уравнение является математической моделью данной задачи.
II этап. Внутримодельное решение.
Перенесем все слагаемые в одну часть
.
Приведем слагаемые к общему знаменателю
.
Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю. Получим следующую систему: ![]()
.
Смотрите также::
Определение понятия педагогического эксперимента
Существует множество определений понятия "педагогический эксперимент". Педагогический эксперимент - это метод познания, с помощью которого исследуются педагогические явления, факты, опыт. Педагогический эксперимент - это специальная организация педагогической деятельности учителей и учащи ...
Анализ современных учебно-методических комплектов
по английскому языку на предмет контроля речевой деятельности
В практической части данной работы мы осуществим анализ тех учебно-методических комплектов, которые вошли в Федеральный перечень учебников по иностранному языку, рекомендованы и допущены Министерством Образования и Науки Российской Федерации к использованию в общеобразовательных учреждениях в 2010/ ...
Особенности воспитания в Древней Индии
По мнению З.И. Васильевой, И.Н. Андреевой, Т.С. Буториной и др., жизнь человека представлялась индийцам непрерывной цепью "деяний", священнодействий. Вся жизнь индийца, в сущности, являлась завершенным циклом обрядов. Ритуал сопровождал зачатие ребенка, его рождение, первый вынос из дома, ...