Третий шаг – это перевод неформальной модели в математическую модель. Такой перевод включает в себя рассмотрение словесного описания неформальной модели и поиск подходящей математической структуры, способной отобразить изучаемые процессы. Это самый сложный этап во всем процессе моделирования. Стадия перевода может таить в себе две опасности. Во-первых, неформальные модели имеют тенденцию быть неоднозначными, и обычно существует несколько способов перевода неформальной модели в математическую (при этом альтернативные математические модели могут иметь совершенно различный смысл). На самом деле это одна из главных причин, изначально толкающих к применению математических моделей: язык математики лишен двусмысленностей и более точен, чем естественный язык, он позволяет исследовать скрытый смысл тончайших различий в формулировках, который плохо доступен исследованию посредством естественного языка.
Следующий этап – этап решения задачи в рамках математической теории – можно еще назвать этапом математической обработки формальной модели. Он является решающим в математическом моделировании. Именно здесь применяется весь арсенал математических методов – логических, алгебраических, геометрических и т. д. – для формального вывода нетривиальных следствий из исходных допущений модели. На стадии математической обработки обычно – вне зависимости от сути задачи – имеют дело с чистыми абстракциями и используют одинаковые математические средства. Этот этап представляет собой дедуктивное ядро моделирования.
На последнем этапе моделирования полученные выводы проходят через еще один процесс перевода – на сей раз с языка математики обратно на естественный язык.
Рассмотрим на примере реализацию всех этапов процесса математического моделирования.
Задача 1. Два автомобиля выехали одновременно из пункта А в пункт В, расстояние между которыми 540 км. Первый автомобиль ехал со скоростью, на 10 км/ч большей, чем второй, и прибыл в пункт В на 45 мин раньше второго. Найдите скорость каждого автомобиля.
I этап. Формализация. Построим математическую модель задачи.
Обозначим за x км/ч – скорость второго автомобиля, тогда скорость первого автомобиля равна (x+10) км/ч.
ч – время, потраченное на весь путь вторым автомобилем.
ч – время, потраченное на весь путь первым автомобилем.
Известно, что второй автомобиль потратил на путь на 45 мин больше, чем первый. .
. Полученное уравнение является математической моделью данной задачи.
II этап. Внутримодельное решение.
Перенесем все слагаемые в одну часть .
Приведем слагаемые к общему знаменателю .
Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю. Получим следующую систему: .
Смотрите также::
Тренажер, включающий объективную модель, основанную на
уравнениях баланса с коэффициентами, полученными из конструктивных данных
Технология Т3П делает следующие важные шаги по сравнению с Т2П: – вычисления расходов тепла, воды и пара во всех режимах работы моделируемого оборудования производятся на основе точных формул, аппроксимация не применяется; – теплоемкости и внутренние объемы всех элементов энергоблока правильно учит ...
Программа формирования экономической культуры
младших школьников
Основные цели, задачи и принципы экономического образования младших школьников. Опыт работы показывает, что экономическое образование в раннем возрасте помогает детям развить экономическое мышление, освоить понятийный аппарат, столь необходимый для ориентации в современном рыночном мире. Целью экон ...
Нетрадиционные материалы, используемые на занятиях по изобразительной
деятельности
Под термином «нетрадиционные» подразумеваются материалы, которыми можно заменить в работе обычные, традиционно используемые на занятиях по трудовому обучению материалы. Это может быть, например, различный бросовый материал, снег, репьи, бумажная масса, тесто и т.д. Термин «нетрадиционные материалы» ...