l=2r+2h+
r, h=
, r=
.
Удобней выбрать r, так как для выражения площади понадобится r2, а h входит в это выражение линейно.
S(r)=
. Эта функция и есть модель данной задачи.
II этап. Внутримодельное решение.
Ясно, что 0<r<
.
Найдем производную функции S(r):
.![]()
![]()
Воспользуемся необходимым условием экстремума: l-r(
+4)=0. Отсюда r=
. Из соображений здравого смысла окно не может иметь наименьшую площадь, поэтому найденное значение r – точка максимума. При этом r=h=
.
III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи. Чтобы при данном периметре l окно пропускало больше света, необходимо установить следующие размеры окна: r=h=
Учителю следует добиться от учащихся четкого понимания значения и содержания каждого из выше описанных этапов процесса математического моделирования. Это нужно для того, чтобы школьники усвоили, что они решают не просто математическую задачу, а конкретную жизненную ситуацию математическими методами. Тогда учащиеся смогут увидеть в математике практическое значение, и не будут воспринимать ее как абстрактную науку.
Метод математического моделирования является мощным инструментом для исследования различных процессов и систем. Приложения этого метода к решению конкретных задач изложены в ряде известных монографий и учебных пособий. Вместе с тем, многие из них предполагают достаточно высокий уровень математической подготовки учеников, что зачастую вызывает определенные трудности при изучении материала. Понятие математической модели и некоторые общие положения, связанные с ним, должны в той или иной форме иллюстрироваться на протяжении всего курса математики, а разделы школьной программы, посвященные задачам на работу, движение, проценты, прогрессии и, наконец, задачам на применение производных и интегралов, могут рассматриваться как введение в метод математического моделирования.
Смотрите также::
Формирование пространственных представлений в онтогенезе
Многие авторы, занимающиеся, проблемой изучения пространственных представлений относят их к базису, над которым надстраивается вся совокупность высших психических процессов – письмо, счет, чтение и т.д. Основой для исследования базовых составляющих психического развития являются работы А.В.Семенови ...
Педагогические системы в современном педагогическом
знании
Существуют следующие основные определения понятия «педагогическая система». Спирин Л.Ф. определяет педагогическую систему как всякое объединение людей, в котором ставятся педагогические цели и решаются педагогические задачи. Второе определение: педагогическая система – всякое объединение людей, где ...
Психологические особенности детей дошкольного возраста
Психологические особенности детей 3-го года жизни К концу третьего года жизни происходит существенный сдвиг в развитии игровой деятельности детей. Он заключается, прежде всего, в том, что у ребенка начинает появляться представление о роли, которую выполняет взрослый в реальном взаимодействии с друг ...