l=2r+2h+
r, h=
, r=
.
Удобней выбрать r, так как для выражения площади понадобится r2, а h входит в это выражение линейно.
S(r)=
. Эта функция и есть модель данной задачи.
II этап. Внутримодельное решение.
Ясно, что 0<r<
.
Найдем производную функции S(r):
.![]()
![]()
Воспользуемся необходимым условием экстремума: l-r(
+4)=0. Отсюда r=
. Из соображений здравого смысла окно не может иметь наименьшую площадь, поэтому найденное значение r – точка максимума. При этом r=h=
.
III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи. Чтобы при данном периметре l окно пропускало больше света, необходимо установить следующие размеры окна: r=h=
Учителю следует добиться от учащихся четкого понимания значения и содержания каждого из выше описанных этапов процесса математического моделирования. Это нужно для того, чтобы школьники усвоили, что они решают не просто математическую задачу, а конкретную жизненную ситуацию математическими методами. Тогда учащиеся смогут увидеть в математике практическое значение, и не будут воспринимать ее как абстрактную науку.
Метод математического моделирования является мощным инструментом для исследования различных процессов и систем. Приложения этого метода к решению конкретных задач изложены в ряде известных монографий и учебных пособий. Вместе с тем, многие из них предполагают достаточно высокий уровень математической подготовки учеников, что зачастую вызывает определенные трудности при изучении материала. Понятие математической модели и некоторые общие положения, связанные с ним, должны в той или иной форме иллюстрироваться на протяжении всего курса математики, а разделы школьной программы, посвященные задачам на работу, движение, проценты, прогрессии и, наконец, задачам на применение производных и интегралов, могут рассматриваться как введение в метод математического моделирования.
Смотрите также::
Отметка в семейной жизни школьника
Ребенка, посещающего школу, дома обычно встречают вопросом о том, какую отметку он сегодня получил. Со времени начала обучения школьная отметка становится мощным регулятором отношений внутри семьи. Каким образом это будет осуществляться, зависит от того, насколько родители смогут ее раскрыть, осмыс ...
Методика применения ТСО
№ Название Назначения Недостатки Применение 1 Плакаты и макеты, статичные и действующие Иллюстрация, включение зрения в процесс усвоения Неэффективность при изучении и взаимосвязи, ограниченность показа В качестве наглядной иллюстрации при изучении и контроле несложных процессов и явлений 2 Эпидиас ...
Дошкольное образование до 1917 года
В последней трети XIX в. появляются новые типы образовательных заведений. Первый бесплатный «народный детский сад» в России для детей горожан из низших слоев населения был открыт в 1866 г. при благотворительном «Обществе дешевых квартир» в Санкт-Петербурге. В том же году редактор педагогического жу ...