На доказательство признака равенства треугольников по гипотенузе и катету следует обратить особое внимание. Если предыдущие признаки доказываются весьма просто, то доказательство этого признака требует дополнительных построений и непростых логических рассуждений. После того как учитель сам проведёт доказательство признака равенства прямоугольных треугольников по гипотенузе и катету, можно решить задачу 267 на применение рассмотренного признака.
Для закрепления этого признака можно предложить учащимся задание:
3. Из точки D, лежащей внутри угла A, опущены перпендикуляры DB и DC на стороны угла. Докажите, что ΔADB = ΔADC, если DB = DC
При решении задач ученики могут делать дополнительный шаг, присутствующий в доказательстве первых двух признаков, если устанавливать равенство второй пары острых углов и сводить доказательство к общим признакам треугольников.
Теорема Пифагора и методика её изучения
В этом параграфе изучается одна из важнейших теорем геометрии – теорема Пифагора и обратная ей теорема. Теорема Пифагора позволят значительно расширить круг задач, решаемых в курсе геометрии. На ней в значительной мере базируется дальнейшее изложение теоретического курса.
В результате изучения данного параграфа учащиеся должны:
знать формулировки теоремы Пифагора и следствий из неё; уметь воспроизводить доказательство теоремы Пифагора, применять ее при решении задач.
Чтобы теорема заинтересовала учеников и была ими усвоена, нужна основательная, всесторонняя подготовка. Не заинтересовавшиеся не будут слушать (слушать «пассивно»), и урок потеряет смысл, не будет уроком.
Перед доказательством теоремы Пифагора желательно провести подготовительную работу по готовым чертежам и повторить основные понятия, определения, термины; свойства площадей, так как в доказательстве используется площадь прямоугольника.
При проведении доказательства теоремы Пифагора полезно подвести учеников к тому, чтобы они приняли пассивное участие в составлении формулировки теоремы; освоили формулировку, выделили условие и заключение. Учитель должен, заранее заготовив чертёж, необходимый для доказательства теоремы, наглядно показывать на чертеже этапы проведения доказательства.
Необходимо, чтобы ученики имели опыт в решении задач; освоили первые шаги (умели сделать чертёж как можно близкий к усвоению, внести в него всё, что дано в условии, ввести необходимые обозначения), записать условие и заключение, используя введённые обозначения; Владели элементарными навыками поиска решения задач.
Для закрепления теоремы можно предложить учащимся следующие устные задачи на вычисление:
а) Катеты прямоугольного треугольника 6 см и 8 см. Вычислите гипотенузу треугольника.
б) Гипотенуза прямоугольного треугольника равна 5 см, а один из катетов 3 см. Определите второй катет.
Вопросами для повторения предусматриваются доказательства следствий из теоремы Пифагора. Эти доказательства просты и в явном виде в учебном пособии отсутствуют. При разборе этих доказательств в классе можно предложить учащимся записать их в тетради.
Ещё одним подходом к изучению теоремы Пифагора, является метод проблемной ситуации на уроках геометрии.
Учебный процесс совершается более активно в тех случаях, когда он связан с решением задач пробных ситуаций, а проблемы имеют мотивационную основу, включая живой интерес к предмету изучения. Мотивы стимулируют, организуют и направляют учебную деятельность. Значительный интерес представляет мотивация для организации процесса обучения и направления мыслительной деятельности учеников.
Смотрите также::
Цели и задачи опытно-практической работы
Изучив теоретические основы организации лексической работы с детьми младшего школьного возраста, можно сделать вывод о том, что необходимо систематически проводить работу со словом как на уроках русского языка и литературы, так и на других уроках в начальной школе. Целью практической работы явилась ...
Проблемы современной арт-педагогики
Арт-педагогика в широком смысле рассматривает ученика как личность, стремящуюся к самореализации и самоопределению, выстраивая взаимодействие с ним на основе субъектно-субъектных отношений. Такое взаимоотношение подразумевает определенные требования, выдвигаемые к личности самого педагога. Практика ...
Особенности дистанционного обучения
Система дистанционного обучения, как самостоятельная форма появилась в XX веке. Предпосылкой её возникновения стало бурное развитие информационных технологий и как результат возможность передачи информации на большие расстояния. Сопоставляя данные можно заключить, что дистанционное обучение — это н ...