3. В ходе опытного преподавания выяснилось, что методика изучения математического моделирования по учебникам Г. В. Дорофеева, Л. В. Петерсон эффективна и может быть использована на уроках математики и в таких классах, где обучение ведется по другим учебникам.
В ходе теоретического и экспериментального исследования получены следующие результаты:
рассмотрены основные вопросы и выявлены проблемы обучения элементам математического моделирования;
рассмотрены понятия «математическая модель» и «математическое моделирование», выделены основные идеи и этапы метода математического моделирования;
выделены дидактические функции преподавания математического моделирования в школе;
обосновано значение изучения элементов математического моделирования на ранних этапах обучения, а именно в 5 – 6 классах;
выделены основные умения, характерные для этапов формализации и интерпретации, и описана методика обучения элементам математического моделирования в 5 -6 классах (по учебникам «Математика» для 5- 6 классов Г. В. Дорофеева, Л. Г. Петерсон);
проанализированы учебники по математике для 5 – 6 классов с точки зрения наличия элементов математического моделирования и сделаны соответствующие выводы;
в процессе опытного преподавания, согласно рассмотренным методикам, были разработаны и проведены два занятия математического кружка и контрольная работа.
Результаты проведенного исследования позволяют сделать следующие выводы:
при решении задач посредством моделирования школьники учатся абстрагированию, анализу, синтезу, сравнению, аналогии, обобщению, переводу жизненных проблемных ситуаций в абстрактные модели и наоборот. Использование моделирования как способа обучения поисковой деятельности, обобщенным подходам, приемам в решении задач способствует усилению творческой направленности процесса обучения, развитию умственных способностей учащихся, то есть моделирование является средством совершенствования процесса обучения математике, которое позволяет активизировать познавательную деятельность учащихся и развивать их мышление;
включение моделирования в содержание уроков математики необходимо для ознакомления учащихся с современной научной трактовкой понятий модели и моделирования, овладения моделированием как методом научного познания и решения сюжетных задач;
следует включить изучение элементов математического моделирования в содержание уроков не только в 7 – 9 классах, а на ранних этапах обучения, то есть уже в 5 – 6 классах или еще раньше (в начальной школе). Это обосновано тем, что у учащихся создаются предпосылки для более осознанного изучения математики, формирования диалектико-материалистического стиля мышления и повышения интереса к самой науке математике.
Можно сделать общий вывод, что все задачи исследования решены, цель достигнута, гипотеза подтверждена и теоретическим анализом, и экспериментально.
Смотрите также::
Признаки равенства прямоугольных треугольников
Чтобы установить равенство прямоугольных треугольников, достаточно знать, что два элемента одного треугольника соответственно равны двум элементам другого треугольника (исключая прямой угол). Это, конечно, не распространяется на равенство двух углов одного треугольника двум углам другого треугольни ...
Содержание коррекционно-развивающей работы при раннем детском аутизме
Система помощи лицам с аутизмом начала впервые формироваться в США и Западной Европе в середине 60-х гг. Нужно, однако отметить, что первая в Европе школа для аутичных детей - Sotienskole – начала функционировать в Дании в 1920 году, когда ни в психиатрии, ни в специальной педагогике понятие «детск ...
Углы в прямоугольном треугольнике
Синус, косинус и тангенс острого угла в прямоугольном треугольнике Рассмотрим прямоугольный треугольник ABC с прямым углом C (рис. 10). Катет BC этого треугольника является противоположным углу A, а катет AC – прилежащим к этому углу. Косинусом острого угла прямоугольного треугольника называется от ...