Проведем анализ некоторых учебников с точки зрения использования в них исторического материала.
Учебники М.И. Башмакова:
В алгебре 7
класс на уроке № 2 «Составляем алгебраические выражения» приводится исторический материал о том, что «обозначения, которыми мы сейчас пользуемся, для записи формул и математических выражений начали создаваться в XVI – XVII веках». В конце изучения темы «Алгебраические выражения» проводится беседа, которая называется «Знакомимся с историей алгебры». В ней рассказывается о Диофанте и приводится «задача, которая сохранилась в надписи на его гробнице». Решение этой задачи рассматривается как пример на уроке № 5 «Обсуждаем решение уравнений».
Так же рассказывается об Аль-Хорезми, дается его задача о решении квадратного уравнения, а затем дается задание учащимся «способом Аль-Хорезми найти один корень уравнения
».
В § 2 «Степени» на уроке № 10 «Перемножаем одинаковые буквы» рассказывается о знаменитом индийском математике Рамануджан и его способности распознавать свойства чисел. В заключении § 2 в беседе «Оцениваем рост степени» приводится индийская легенда о создателе шахмат и правителе.
Следующее знакомство с историей математики приводится в конце § 3. Здесь рассказывается о Фибоначчи и его последовательности, а так же о том, как появилась эта последовательность. Далее рассматривается история об Франсуа Виете и уравнение, к которому Виет нашел 23 корня.
Здесь же говорится об Эваристе Галуа и его вкладе в математику. Приводится пример о поле, которое носит его имя и предлагается обучающимся найти значения выражения в поле Галу.
§ 5 в этом учебнике называется «Бином Ньютона» и на первом уроке дается понятие бинома Ньютона, и чье имя он носит.
На 3 уроке этой темы рассказывается о числовом треугольнике, называемом треугольник Паскаля. Но подробнее об этом рассматривается в беседе «Исследуем треугольник Паскаля» в конце § 5.
Алгебра 8
класс. § 2 «Квадратные корни» начинается с истории «Развития понятия числа». В этом пункте говорится о Пифагоре, Декарте и его значении в развитии математики. Далее рассказывается о немецком математике XIX века Кронекере и его вкладе, о Евклиде и его уравнении
, приводящие к понятию иррациональных чисел. Затем рассматриваются комплексные числа и вклад Гаусса в развитие теории комплексного числа.
§ 3 начинается с рассмотрения решения квадратных уравнений в древности. Дается задача древнего Вавилона и говорится о ее решении, упоминаются «Начала» Евклида и одна из его теорем, анализируется знаменитое уравнение Аль-Хорезм. В беседе, которая представлена в конце § 3, говорится об итальянском математике Д. Кардано и открытии им формулы корней кубического уравнения, его ученике Феррари и решении уравнения четвертой степени, о замечательном открытии Абеля, Галуа, Руффини.
В беседе к § 4, рассказывается о появлении знаков >,<, об одной из первых знаменитых «задач на неравенства» из «Начал» Евклида. Говорится о О. Коши и его вкладе в развитие математики. Приводится индийская задача XII века, решаемая с помощью квадратных уравнений. Упоминается о Декарте, Ферма, Галилео, Ньютона, Лейбница. Даются определения функции, данное И. Бернулли, Л. Эйлером, Н.И. Лобачевским.
Смотрите также::
Краткий исторический очерк об изучении речевого развития учащихся
Вопросы культуры речи в современном обществе имеют первостепенное значение. Большинство ученых (языковедов, философов, психологов, социологов, педагогов) озабочено снижением общего уровня речевой культуры. Как отмечает Н. Г. Комлев, "культура речевого воздействия упала до самой низкой черты. Р ...
Введение понятия прямоугольного треугольника
Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки – сторонами. На рисунке 1 мы видим треугольник с вершинами A, B, C и сторонами AB, AC, CB. Треугольник обозн ...
Структура процесса
Как говорил Е.А. Аркин, действительная сущность воспитания заключается в создании новых ценных качеств на основе того, что есть в ребенке сильного, здорового, прекрасного, а истинная сущность ребенка заключается в его способности, возможности, стремлении стать лучше, сильнее, совершеннее. И как час ...