30°, 45° И 60°
Найдём сначала значение синуса, косинуса и тангенса для углов 30° и 60°. Для этого рассмотрим прямоугольный треугольник ABC с прямым углом C, у которого < A =30°, <B = 60° (рис. 13).
Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то . Но
. С другой стороны
. Итак,
.
Из основного тригонометрического тождества получаем
,
.
По формуле (4) П. 5.1. находим
.
Найдём теперь sin45°, cos45° и tg45°. Для этого рассмотрим равнобедренный прямоугольный треугольник ABC с прямым углом C (рис. 14).
В этом треугольнике AC = BC, < A = < B = 45°. По теореме Пифагора
AB2 = AC2 + BC2 = 2AC2 = 2BC2, откуда AC = BC =. Следовательно,
.
Составим таблицу значений sinα, cosα, tgα для углов α, равных 30°, 45°, 60°.
α |
30° |
45° |
60° |
sinα |
|
|
|
cosα |
|
|
|
tgα |
|
1 |
|
урок геометрия треугольник теорема
Смотрите также::
Современные подходы к решению проблемы развития коммуникативных
способностей младших школьников в процессе образования
В данном параграфе рассмотрим современные подходы к решению проблемы развития коммуникативных способностей младших школьников в процессе образования, описанные в журнале "Начальная школа". Т. Д. Куртукова – учитель русского языка и литературы считает, что педагог должен уметь строить взаи ...
Два подхода к решению прямоугольных треугольников
Существует два подхода к изложению темы «Решение прямоугольных треугольников». Первый подход основан на запоминании четырёх определений основных тригонометрических функций и ещё шести правил: 1. Катет равен гипотенузе, умноженной на синус противолежащего угла; 2. Катет равен гипотенузе, умноженной ...
Виды контроля на разных этапах обучения
На ряду с методами и формами проверки необходимо остановиться на её видах, таких, как: · текущий учет; · тематическая проверка; · итоговый контроль. Текущий учет - основной вид проверки знаний. Он позволяет проверить усвоение пройденного на уроке, выявить возможные пробелы в знаниях и наметить пути ...