Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Углы в прямоугольном треугольнике

Углы в прямоугольном треугольнике

Страница 1

Синус, косинус и тангенс острого угла в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник ABC с прямым углом C (рис. 10). Катет BC этого треугольника является противоположным углу A,

а катет AC – прилежащим к этому углу.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Синус, косинус и тангенс угла равного α обозначается символами sin α, cos α и tg α (читается: «синус альфа», «косинус альфа» и «тангенс альфа»). На рисунке

, (1)

, (2)

, (3)

Из формул (1) и (2) получаем:

Сравнивая с формулой (3), находим

(4),

то есть тангенс угла равен отношению синуса к косинусу этого угла.

Теорема. Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Доказательство. Пусть ABC и A1B1C1 – два прямоугольных треугольника с прямыми углами C и C1 и с одним и тем же углом при вершине A и A1 равны α (рис. 11).

Треугольники ABC и A1B1C1 подобны по первому признаку подобия треугольников, поэтому . Из этих равенств следует, что , то есть .

Аналогично , то есть , и , то есть .

Что и требовалось доказать.

Докажем теперь справедливость равенства

(5).

Из формул (1) и (2) получаем . По теореме Пифагора , поэтому .

Равенство (5) называется основным тригонометрическим тождеством.

Представим ещё одно доказательство теоремы Пифагора, основанное на определении косинуса угла в прямоугольном треугольнике.

Доказательство. Пусть ABC – данный прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла C. (рис. 12).

По определению косинуса угла . Отсюда . Аналогично . Отсюда .

Складывая полученные равенства почленно, и, замечая, что AD+DB=AB, получим .

Что и требовалось доказать.

Значение синуса, косинуса и тангенса для углов

Страницы: 1 2


Смотрите также::

Творческий замысел
Мой проект задумывался как интерактивная игра для детей. В жанровом отношении это квест. Квест (англ. quest — поиски) — один из основных жанров игр, требующих от игрока решения умственных задач для продвижения по сюжету. Сюжет может быть предопределённым или же давать множество исходов, выбор котор ...

Сферическое зеркало
В учебнике Пурышевой на рисунке (39) изображены непосредственно вогнутое и выпуклое зеркала и отдельно рассматривается на рисунке (40) ход лучей в вогнутом зеркале. Это позволяет учащимся постепенно осваивать данный материал. Но ход лучей в выпуклом зеркале автором не рассматривается. Рис. 39 Пурыш ...

Основные модели использования домашнего компьютера в системе школьного образования
В основании системного подхода к организации образовательного процесса с использованием домашнего компьютера должны быть модели такого образовательного процесса. Рассмотрим некоторые из них. 6 Домашний компьютер используется без ведома учителя. Компьютер выполняет роль домашнего репетитора. При это ...

Разделы

Copyright © 2023 - All Rights Reserved - www.edumask.ru