Новое в педагогике » Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов » Углы в прямоугольном треугольнике

Углы в прямоугольном треугольнике

Страница 1

Синус, косинус и тангенс острого угла в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник ABC с прямым углом C (рис. 10). Катет BC этого треугольника является противоположным углу A,

а катет AC – прилежащим к этому углу.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Синус, косинус и тангенс угла равного α обозначается символами sin α, cos α и tg α (читается: «синус альфа», «косинус альфа» и «тангенс альфа»). На рисунке

, (1)

, (2)

, (3)

Из формул (1) и (2) получаем:

Сравнивая с формулой (3), находим

(4),

то есть тангенс угла равен отношению синуса к косинусу этого угла.

Теорема. Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Доказательство. Пусть ABC и A1B1C1 – два прямоугольных треугольника с прямыми углами C и C1 и с одним и тем же углом при вершине A и A1 равны α (рис. 11).

Треугольники ABC и A1B1C1 подобны по первому признаку подобия треугольников, поэтому . Из этих равенств следует, что , то есть .

Аналогично , то есть , и , то есть .

Что и требовалось доказать.

Докажем теперь справедливость равенства

(5).

Из формул (1) и (2) получаем . По теореме Пифагора , поэтому .

Равенство (5) называется основным тригонометрическим тождеством.

Представим ещё одно доказательство теоремы Пифагора, основанное на определении косинуса угла в прямоугольном треугольнике.

Доказательство. Пусть ABC – данный прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла C. (рис. 12).

По определению косинуса угла . Отсюда . Аналогично . Отсюда .

Складывая полученные равенства почленно, и, замечая, что AD+DB=AB, получим .

Что и требовалось доказать.

Значение синуса, косинуса и тангенса для углов

Страницы: 1 2


Смотрите также::

Организация учебного процесса в средневековом университете
Существовали две «семьи» университетских статутов (обеспечивающих их внутреннюю жизнь документов) – Болонская и Парижская (или «южная» и «северная»). Последняя была более распространенной. Среди студентов можно было встретить как детей и подростков, так и убеленных сединами старцев. Чаще всего обуч ...

Решение ситуационных производственных задач
Этот метод используется для формирования у учащихся профессио-нальных умений. Основным дидактическим материалрм служит ситуацион-ная задача, которая включает в себя условия (описание ситуации и исходные количественные данные) и вопрос (задание), поставленный перед учащими-ся. Ситуационная задача до ...

Тренажер, включающий модель, основанную на уравнениях баланса с коэффициентами, полученными из экспериментальных данных
Существенным шагом вперед в сфере построения моделей энергоблоков стало признание того факта, что модели должны напрямую строиться на основе физических законов, которыми определяется функционирование реального объекта. Прежде всего, это законы сохранения энергии (тепла), массы и количества движения ...

Разделы

Copyright © 2025 - All Rights Reserved - www.edumask.ru