В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например, футбольный и теннисный мячи, круглая тарелка и большое круглое блюдо. В геометрии фигуры одинаковой формы принято называть подобными. Введём понятие подобных треугольников.
Пусть у двух треугольников ABC и A1B1C1 углы соответственно равны: <A=<A1, <B=<B1, <C=<C1. В этом случае стороны AB и A1B1, BC и B1C1, CA и C1A1 называются сходственными.
Два треугольника называются подобными, если их углы равны и стороны одного треугольника пропорциональны сходственным сторонам другого (рис. 15).
Другими словами, два треугольника подобны, если для них можно ввести обозначения ABC и A1B1C1 так что
<A=<A1, <B=<B1, <C=<C1, (1)
(2).
Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. Обозначается ∆ABC~∆A1B1C1.
Оказывается, что подобие треугольников можно устанавливать, проверив только некоторые из равенств (1) и (2).
У прямоугольного треугольника один угол прямой. Поэтому для подобия прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.
С помощью этого признака подобия прямоугольных треугольников докажем некоторые соотношения в треугольниках.
Пусть ABC – прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла (рис. 16).
Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет его на подобные прямоугольные треугольники, каждый из которых подобен данному треугольнику.
На рисунке ABC – прямоугольный треугольник <ABC=90º, CD ┴AB.
Δ ACD ~ Δ CDB;
Δ ACD ~ Δ ABC;
Δ CDB ~ Δ ABC.
Треугольники ABC и CBD имеют общий угол при вершине B. Следовательно, они подобны ∆ABC~∆ CBD. Из подобия треугольников следует пропорциональность соответствующих сторон:
, или
, а отсюда следует, что
. Это соотношение обычно формулируется так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Прямоугольные треугольники ACD и CBD также подобны. У них равные острые углы при вершинах A и C. Из подобия этих треугольников следует пропорциональность их сторон:
или
, а отсюда следует, что
. Это соотношение обычно формулируется так: высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Смотрите также::
Природа познавательных способностей человека в понимании Абая
Великий художник слова обладал незаурядными педагогическими способностями, определившими уровень его дидактических воззрений и принципов. Дидактические установки Абая в вопросах умственного воспитания можно сформулировать в следующем виде: 1. Обучение от простого к сложному. Этот один из основных п ...
Сценарий урока по рассказу Ф.М.
Достоевского «Мальчик у Христа на елке»
Урок литературы, 6 класс Тип: внеклассное чтение. Тема: Горести и радости рождественской ночи. (Ф.М. Достоевский «Мальчик у Христа на елке».) Цели: приобщение к наследию самого сложного отечественного писателя; совершенствовать умение анализа художественного текста; развитие устной и письменной реч ...
Принципы физического воспитания
Методика лишь тогда ведет кратчайшим путем к цели, когда основывается на верных принципах. Наиболее общие отправные положения, определяющие всю направленность и организацию деятельности по физическому воспитанию в нашем обществе, - это принципы всестороннего гармонического развития личности, связи ...