В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например, футбольный и теннисный мячи, круглая тарелка и большое круглое блюдо. В геометрии фигуры одинаковой формы принято называть подобными. Введём понятие подобных треугольников.
Пусть у двух треугольников ABC и A1B1C1 углы соответственно равны: <A=<A1, <B=<B1, <C=<C1. В этом случае стороны AB и A1B1, BC и B1C1, CA и C1A1 называются сходственными.
Два треугольника называются подобными, если их углы равны и стороны одного треугольника пропорциональны сходственным сторонам другого (рис. 15).
Другими словами, два треугольника подобны, если для них можно ввести обозначения ABC и A1B1C1 так что
<A=<A1, <B=<B1, <C=<C1, (1)
(2).
Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. Обозначается ∆ABC~∆A1B1C1.
Оказывается, что подобие треугольников можно устанавливать, проверив только некоторые из равенств (1) и (2).
У прямоугольного треугольника один угол прямой. Поэтому для подобия прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.
С помощью этого признака подобия прямоугольных треугольников докажем некоторые соотношения в треугольниках.
Пусть ABC – прямоугольный треугольник с прямым углом C. Проведём высоту CD из вершины прямого угла (рис. 16).
Высота прямоугольного треугольника, проведённая из вершины прямого угла, разделяет его на подобные прямоугольные треугольники, каждый из которых подобен данному треугольнику.
На рисунке ABC – прямоугольный треугольник <ABC=90º, CD ┴AB.
Δ ACD ~ Δ CDB;
Δ ACD ~ Δ ABC;
Δ CDB ~ Δ ABC.
Треугольники ABC и CBD имеют общий угол при вершине B. Следовательно, они подобны ∆ABC~∆ CBD. Из подобия треугольников следует пропорциональность соответствующих сторон:
, или
, а отсюда следует, что
. Это соотношение обычно формулируется так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Прямоугольные треугольники ACD и CBD также подобны. У них равные острые углы при вершинах A и C. Из подобия этих треугольников следует пропорциональность их сторон:
или
, а отсюда следует, что
. Это соотношение обычно формулируется так: высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Смотрите также::
Формирующий этап опытно- экспериментальной работы по теме
«Формирование коммуникативной компетенции письменной речи на среднем этапе
обучения немецкому языку»
Формирующий этап был основан на проведении системы уроков, направленных на формирование коммуникативной компетенции при обучении письменной речи. Данный этап предполагал наряду с использованием упражнений, предложенных автором учебника, применение дополнительных упражнений, направленных на формиров ...
О личности Кандинского
Вполне логично будет начать с рассказа о личности нашего героя, Василия Васильевича Кандинского. В данном случае именно его пример был выбран автором этой работы далеко не просто так. Давайте обратимся к первичной информации об этом человеке, которую мы получим почти из любого справочника: "Ва ...
Сущность формирования профессиональных умений и навыков
Движения и действия реализуются у человека сознательно и бессоз-нательно. Осознаются, как правило, конечные цели действий, а также общий их характер. С одной стороны, никакое действие человека не бывает до кон-ца автоматизированным (т. е. удаленным из сознания), потому что оно в конечном счете вызы ...