Индукция и дедукция
Восхождение от частного к общему, от фактов установленных с помощью наблюдения и опыта, к общим закономерностям имеет логическую форму рассуждения "от частного к общему". Вывод общего заключения из частных посылок называется индукцией. В начальной школе возможно использование индукций двух видов: полной и неполной. Индукция бывает полной, если частные посылки исчерпывают все возможные случаи, и неполной. Говоря об использовании индукции в обучении, имеют в виду, как правило, неполную индукцию. Например, сколько бы мы ни приводили равенств, отражающих переместительность сложения или умножения, невозможно исчерпать все частные случаи, так как пар натуральных чисел бесконечно много. Неполная индукция не может, разумеется, служить методом доказательства в математике. Но она является мощным эвристическим методом.
Сколько же надо рассмотреть частных посылок, чтобы подвести учащихся к открытию общей закономерности, общего правила, алгоритма? На этот вопрос, очевидно, нельзя дать исчерпывающего ответа. Необходимо, чтобы частное содержание, которое выражается в посылках и не входит в общее заключение, варьировалось, т. е. видоизменялось от посылки к посылке. Это помогает школьникам выявить то общее, неизменное, что должно составлять содержание заключения. Использование индукции иногда бывает мало эффективным, например когда учащимся предлагаются однотипные, малоразличимые посылки. Так, известный алгоритм умножения многозначного числа на однозначное, как и другие алгоритмы, изучаемые в начальных классах, мы не можем описать в общем виде. В процессе его изучения рассматривается следующая система частных случаев: все цифры многозначного множителя значимые, многозначный множитель оканчивается нулем (нулями), этот множитель содержит нуль (нули) в середине. Если эта система рассматривается не в полном объеме, учащиеся могут столкнуться с серьезными трудностями.
При формировании простейших геометрических понятий наряду с наблюдением, опытом, измерениями используется и индукция. Чтобы абстрагировать общую форму, необходимо рассматривать не один, а много квадратов, различающихся размерами, окраской, материалом, из которого они изготовлены. В каждом из квадратов школьники обнаруживают четыре равные стороны, четыре прямых угла, затем по индукции приходят к заключению, что во всяком квадрате четыре стороны и четыре прямых угла.
Дедуктивное рассуждение, которое определяет как рассуждение от общего к частному, отличается от индуктивного (в смысле неполной индукции) достоверностью заключения, которое истинно по крайней мере тогда, когда истинны все посылки. В дедуктивном рассуждении нельзя получить ложное заключение из истинных посылок. Именно поэтому дедуктивные рассуждения используются в математических доказательствах.
Дедукция как метод обучения математике включает обучение дедуктивным доказательствам и преобразованию совокупности предложений, полученных опытным путем либо с помощью аналогии, индукции или других эвристических методов, в систему предложений, упорядоченных отношением следования, которая расширяет уже известный фрагмент теории. Какова же роль дедукции в начальном обучении математике? Имеет ли какое-то отношение пресловутая математическая строгость к начальному обучению? Какие учебные или воспитательные цели оправдывают или, наоборот, отвергают ориентацию на какой- то уровень строгости в начальном обучении? Целесообразность раннего обучения детей точным рассуждениям и убедительным обоснованиям не вызывает сомнений. Однако возможно ли обучение доказательству младших школьников? Не предполагают ли математические доказательства недоступного для учащихся 1-4 классов уровня абстракции? Ответы на поставленные вопросы зависят от того, что понимают под доказательством на начальном этапе обучения математике, или под предматематическим доказательством.
Смотрите также::
Эмпирическое
исследование: Исследование социально - психологических факторов эффективности общения преподавателя и учащихся
Наше исследование проводилось на базе Астраханского государственного колледжа профессиональных технологий. В исследовании принимали участие: студенты 1-3 курсов, в возрасте 15-18 лет, в количестве 58 человек, из которых: юноши - 32 человека, девушки - 25 человек; преподаватели колледжа, в количеств ...
Обеспечение условий для полноценного развития творчества у
детей подготовительной к школе группы
На своеобразие проявления изобразительных способностей у детей большое влияние оказывает окружающая среда ребенка, условия его воспитания и обучения. Психологами выявлено, что ребенок чаще изображает в своих рисунках условия окружающей среды, в которой он растет, то, что он видит вокруг. Например, ...
Организация учебного процесса в средневековом университете
Существовали две «семьи» университетских статутов (обеспечивающих их внутреннюю жизнь документов) – Болонская и Парижская (или «южная» и «северная»). Последняя была более распространенной. Среди студентов можно было встретить как детей и подростков, так и убеленных сединами старцев. Чаще всего обуч ...