Новое в педагогике » Дидактические принципы начального обучения математике » Методы обучения математике

Методы обучения математике

Страница 3

Индукция и дедукция

Восхождение от частного к общему, от фактов установленных с помощью наблюдения и опыта, к общим закономерностям имеет логическую форму рассуждения "от частного к общему". Вывод общего заключения из частных посылок называется индукцией. В начальной школе возможно использование индукций двух видов: полной и неполной. Индукция бывает полной, если частные посылки исчерпывают все возможные случаи, и неполной. Говоря об использовании индукции в обучении, имеют в виду, как правило, неполную индукцию. Например, сколько бы мы ни приводили равенств, отражающих переместительность сложения или умножения, невозможно исчерпать все частные случаи, так как пар натуральных чисел бесконечно много. Неполная индукция не может, разумеется, служить методом доказательства в математике. Но она является мощным эвристическим методом.

Сколько же надо рассмотреть частных посылок, чтобы подвести учащихся к открытию общей закономерности, общего правила, алгоритма? На этот вопрос, очевидно, нельзя дать исчерпывающего ответа. Необходимо, чтобы частное содержание, которое выражается в посылках и не входит в общее заключение, варьировалось, т. е. видоизменялось от посылки к посылке. Это помогает школьникам выявить то общее, неизменное, что должно составлять содержание заключения. Использование индукции иногда бывает мало эффективным, например когда учащимся предлагаются однотипные, малоразличимые посылки. Так, известный алгоритм умножения многозначного числа на однозначное, как и другие алгоритмы, изучаемые в начальных классах, мы не можем описать в общем виде. В процессе его изучения рассматривается следующая система частных случаев: все цифры многозначного множителя значимые, многозначный множитель оканчивается нулем (нулями), этот множитель содержит нуль (нули) в середине. Если эта система рассматривается не в полном объеме, учащиеся могут столкнуться с серьезными трудностями.

При формировании простейших геометрических понятий наряду с наблюдением, опытом, измерениями используется и индукция. Чтобы абстрагировать общую форму, необходимо рассматривать не один, а много квадратов, различающихся размерами, окраской, материалом, из которого они изготовлены. В каждом из квадратов школьники обнаруживают четыре равные стороны, четыре прямых угла, затем по индукции приходят к заключению, что во всяком квадрате четыре стороны и четыре прямых угла.

Дедуктивное рассуждение, которое определяет как рассуждение от общего к частному, отличается от индуктивного (в смысле неполной индукции) достоверностью заключения, которое истинно по крайней мере тогда, когда истинны все посылки. В дедуктивном рассуждении нельзя получить ложное заключение из истинных посылок. Именно поэтому дедуктивные рассуждения используются в математических доказательствах.

Дедукция как метод обучения математике включает обучение дедуктивным доказательствам и преобразованию совокупности предложений, полученных опытным путем либо с помощью аналогии, индукции или других эвристических методов, в систему предложений, упорядоченных отношением следования, которая расширяет уже известный фрагмент теории. Какова же роль дедукции в начальном обучении математике? Имеет ли какое-то отношение пресловутая математическая строгость к начальному обучению? Какие учебные или воспитательные цели оправдывают или, наоборот, отвергают ориентацию на какой- то уровень строгости в начальном обучении? Целесообразность раннего обучения детей точным рассуждениям и убедительным обоснованиям не вызывает сомнений. Однако возможно ли обучение доказательству младших школьников? Не предполагают ли математические доказательства недоступного для учащихся 1-4 классов уровня абстракции? Ответы на поставленные вопросы зависят от того, что понимают под доказательством на начальном этапе обучения математике, или под предматематическим доказательством.

Страницы: 1 2 3 


Смотрите также::

Функции воображения и его развитие
Разум человека не может находиться в бездеятельном состоянии, поэтому люди так много мечтают. Мозг человека продолжает функционировать и тогда, когда в него не поступает новая информация, когда он не решает никаких проблем. Именно в это время и начинает работать воображение. Установлено, что челове ...

Сферическое зеркало
В учебнике Пурышевой на рисунке (39) изображены непосредственно вогнутое и выпуклое зеркала и отдельно рассматривается на рисунке (40) ход лучей в вогнутом зеркале. Это позволяет учащимся постепенно осваивать данный материал. Но ход лучей в выпуклом зеркале автором не рассматривается. Рис. 39 Пурыш ...

Педагогические основы воспитания и развития глухонемых детей
Система воспитания глухонемых детей в СССР являлась не только теоретическим построением, но представляла собой реальный факт сложившейся педагогической практики. Однако, теоретическая и практическая разработки этой системы, направленной на создание сурдопедагогики, в СССР была не доведена до конца. ...

Разделы

Copyright © 2026 - All Rights Reserved - www.edumask.ru