Учебники Г. В. Дорофеева, Л. Г. Петерсон «Математика-5», «Математика-6» входят в часть единого непрерывного курса математики и являются продолжением учебника математики для начальной школы авторов Н. Я. Виленкина и Л. Г. Петерсон. Этот курс разрабатывается в настоящее время с позиции развивающего обучения, гуманизации и гуманитаризации математического образования.
Обучение школьников ведется на высоком уровне трудности. Но материал учебников предусматривает возможность работы по ним детей разного уровня подготовки.
Учебники ориентированы на развитие логического мышления, творческих способностей ребенка и интереса к математике. Учебник для 5 класса состоит из двух частей, для 6 класса – из трех. Каждая часть включает в себя две главы. Эти учебники позволяют учащимся самостоятельно добывать знания, а главное учат учиться. С первых уроков ученикам предлагаются задания для формирования умений сравнивать, обобщать, классифицировать, рассуждать. Большая часть заданий требует от учащихся творческого подхода.
Новый материал вводится не через передачу готового знания, а через самостоятельное «открытие» его учениками. Часто задания для закрепления даны в игровой форме (кодирование и расшифровка, отгадывание загадок и т.п.) Учащиеся с огромным удовольствием выполняют эти задания.
В учебнике в системе даны задания на развитие логики, мышления, развитие всех видов памяти, творческих способностей.
«В совершенно различных, на первый взгляд, задачах можно обнаружить, что их решение практически одинаково. Например, если на столе лежат 2 яблока, 2 апельсина и груша, то как найти общее число фруктов? Конечно, 2 + 2 + 1 = 5. Но ведь точно также мы можем определить и число уроков во вторник, зная, что по расписанию будет два урока русского языка, две математики и физкультура.
В этих двух непохожих ситуациях мы использовали одну и ту же математическую модель, складывая не яблоки с апельсинами и не физкультуру с математикой, а натуральные числа.
Для того чтобы построить математическую модель, надо, прежде всего, научиться переводить условие задачи с привычного родного языка на специальный, математический язык, чем мы и займемся в этом пункте,» – так авторы учебника проводят мотивацию изучения математического моделирования еще в самом начале курса математики пятого класса. Рассмотренный пример, настолько прост и нагляден, что понятен даже пятиклассникам, и становится ясно, что с помощью модели решать задачу будет проще, но еще не понятно, что именно представляет собой математическая модель.
Рассмотрим на примерах, в чем состоит суть этих методов.
Метод проб и ошибок позволяет найти ответ даже в том случае, когда математическая модель представляет собой новый, еще не изученный объект. Однако при использовании этого метода следует всегда помнить о том, что подбор одного решения не гарантирует полноты решения. Поэтому требуется дополнительное обоснование того, что найдены все возможные решения, и ни одного не пропущено.
Задача. Ширина прямоугольника на 9 см меньше длины, а площадь равна 90 см2. Найти стороны прямоугольника .
Решение. Математическая модель представляет собой следующее уравнение:
. Нужно найти
и
. Никакие известные пятиклассникам правила преобразования не помогают найти ответ. Авторы предлагают подобрать решение «экспериментально», так называемым методом проб и ошибок.
Нам надо найти такое число х, чтобы значение выражения х (x – 9) было равно 90. Попробуем подставить в это выражение, например х = 13:
Смотрите также::
Содержательно-технологические аспекты социально-педагогической программы по
профилактике компьютерной зависимости детей и подростков
В этом параграфе мы рассмотрим проведенный констатирующий эксперимент, цели, задачи и методы эксперимента. С целью анализа и характеристики состояния уровня компьютерной зависимости был проведен констатирующий эксперимент, который проводился в экспериментальных классах, в 7, 9 и 11 классе, где 75 ч ...
Воспитательное и оздоровительное значение проведения прогулки детей на
свежем воздухе в старшей группе детского сада
Занятия на свежем воздухе расширяют знания детей о природных и погодных явлениях, помогают установить причинные связи между этими явлениями, что, в свою очередь, влияет на развитие мышления и речи (умение объяснить и сформулировать свои представления). Привлечение детей к подготовке необходимых для ...
Методы развития творческих способностей у детей
Есть великая формула «дедушки» космонавтики К.Э. Циолковского, приоткрывающая завесу над тайной рождения творческого ума: «Сначала я открывал истины, известные многим, затем стал открывать истины, известные некоторым, и, наконец, стал открывать истины, никому еще не известные». Видимо, это и есть п ...